Efficient MCMC for Climate Model Parameter Estimation: Parallel Adaptive Chains and Early Rejection
نویسندگان
چکیده
منابع مشابه
Parallel Chains, Delayed Rejection and Reversible Jump MCMC for Object Recognition
We tackle the problem of object recognition using a Bayesian approach. A marked point process [1] is used as a prior model for the (unknown number of) objects. A sample is generated via Markov chain Monte Carlo (MCMC) techniques using a novel combination of Metropolis-coupled MCMC (MCMCMC) [2] and the Delayed Rejection Algorithm (DRA) [4]. The method is illustrated on some synthetic data contai...
متن کاملDRAM: Efficient adaptive MCMC
We propose to combine two quite powerful ideas that have recently appeared in the Markov chain Monte Carlo literature: adaptive Metropolis samplers and delayed rejection. The ergodicity of the resulting non–Markovian sampler is proved, and the efficiency of the combination is demonstrated with various examples. We present situations where the combination outperforms the original methods: adapta...
متن کاملLinear Parameter Estimation : Asymptotically Efficient Adaptive Strategies
This paper considers the problem of distributed adaptive linear parameter estimation in multiagent inference networks. Local sensing model information is only partially available at the agents, and interagent communication is assumed to be unpredictable. The paper develops a generic mixed time-scale stochastic procedure consisting of simultaneous distributed learning and estimation, in which th...
متن کاملNew adaptive interpolation schemes for efficient meshbased motion estimation
Motion estimation and compensation is an essential part of existing video coding systems. The mesh-based motion estimation (MME) produces smoother motion field, better subjective quality (free from blocking artifacts), and higher peak signal-to-noise ratio (PSNR) in many cases, especially at low bitrate video communications, compared to the conventional block matching algorithm (BMA). Howev...
متن کاملFast and reliable MCMC for cosmological parameter estimation
Markov Chain Monte Carlo (MCMC) techniques are now widely used for cosmological parameter estimation. Chains are generated to sample the posterior probability distribution obtained following the Bayesian approach. An important issue is how to optimize the efficiency of such sampling and how to diagnose whether a finite-length chain has adequately sampled the underlying posterior probability dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bayesian Analysis
سال: 2012
ISSN: 1936-0975
DOI: 10.1214/12-ba724